Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(9): 4357-4367, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38326940

ABSTRACT

Gas nanobubbles used for water treatment and recovery give rise to great concern for their unique advantages of less byproducts, higher efficiency, and environmental friendliness. Nanoscale zerovalent iron (nZVI), which has also been widely explored in the field of environmental remediation, can generate gas hydrogen by direct reaction with water. Whether nanoscale hydrogen bubbles can be produced to enhance the pollution removal of the nZVI system is one significant concern involved. Herein, we report direct observations of in situ generation of hydrogen nanobubbles (HNBs) from nZVI in water. More importantly, the formed HNBs can enhance indeed the reduction of Se(IV) beyond the chemical reduction ascribed to Fe(0), especially in the anaerobic environment. The possible mechanism is that HNBs enhance the reducibility of the system and promote electron transport in the solution. This study demonstrates a unique function of HNBs combined with nZVI for the pollutant removal and a new approach for in situ HNB generation for potential applications in the fields of in situ remediation agriculture, biotechnology, medical treatment, health, etc.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Water Pollutants, Chemical , Water Purification , Iron
2.
ACS Omega ; 9(6): 6955-6964, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371786

ABSTRACT

High specific capacitance, high energy density, and high power density have always been important directions for the improvement of electrode materials for supercapacitors. In this paper, Co3O4 nanowire arrays with various Mn doping concentrations (Mn:Co molar ratio = 1:11, 1:5, 1:2) directly grown on nickel foam (NF) were prepared by a simple hydrothermal method and annealing process. The influence of Mn doping on the morphology, structure, and electrochemical behaviors of Co3O4 was investigated. The results show that partial substitution of Co ions with Mn ions in the spinel structure does not change the nanowire morphology of pure Co3O4 but increases the lattice parameter and decreases the crystallinity of cobalt oxide. Electrochemical measurements showed that Mn doping in Co3O4 could effectively enhance the redox activity, especially Co3O4 with a Mn doping ratio of 1:5, which exhibits the most excellent electrochemical performance, with the maximum specific capacitance of 1210.8 F·g-1 at 1 A·g-1 and a rate capability of 33.0% at 30 A·g-1. The asymmetric supercapacitor (ASC) device assembled with the optimal Mn-Co3O4 (1:5) and activated carbon (AC) electrode performs a high specific capacitance of 105.8 F·g-1, a high energy density of 33 Wh·kg-1 at a power density of 748.1 W·kg-1, and a capacitance retention of 60.2% after 5000 cycles. This work indicates that an appropriate Mn doping concentration in the Co3O4 lattice structure will have great potential in rationalizing the design of spinel oxides for efficient electrochemical performance.

3.
J Environ Manage ; 351: 119922, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150929

ABSTRACT

Layered double hydroxides (LDHs) have gained significant recognition for their facile synthesis and super-hydrophilic two-dimensional (2D) structure to fabricate antifouling membranes for oily wastewater separation. However, conventional PVDF membranes, due to their hydrophobic nature and inert matrix, often exhibit insufficient permeance and compatibility. In this study, a novel NiFe-LDH@MnO2/PVDF membrane was synthesized using ultrasonic, redox, and microwave-hydrothermal processes. This innovative approach cultivated grass-like NiFe-LDH@MnO2 nanoparticles within an inert PVDF matrix, promoting the growth of highly hydrophilic composites. The presence of NiFe-LDH@MnO2 resulted in pronounced enhancements in surface morphology, interfacial wettability, and oil rejection for the fabricated membrane. The optimal NiFe-LDH@MnO2/PVDF-2 membrane exhibited an extremely high pure water flux (1364 L m-2•h-1), and increased oil rejection (from 81.2% to 93.5%) without sacrificing water permeation compared to the original PVDF membrane. Additionally, the NiFe-LDH@MnO2/PVDF membrane demonstrated remarkable antifouling properties, evident by an exceptional fouling resistance ratio of 96.8% following slight water rinsing. Mechanistic insights into the enhanced antifouling performance were elucidated through a comparative "semi-immersion" investigation. The facile synthesis method, coupled with the improved membrane performance, highlights the potential application prospects of this hybrid membrane in emulsified oily wastewater treatment and environmental remediation.


Subject(s)
Biofouling , Fluorocarbon Polymers , Polyvinyls , Water Purification , Manganese Compounds , Oxides , Oils , Water , Water Purification/methods
4.
Langmuir ; 39(47): 16873-16880, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37966887

ABSTRACT

The freezing process of aqueous solutions plays a crucial role in various applications including cryopreservation, glaciers, and frozen materials. However, less research has focused on the influence of nanoscale gas bubble formation or collapse in water during freezing, which may significantly impact the formation of ice crystals. Herein, we report for the first time that the freezing process can produce nanobubbles in aqueous solutions, and their size and number concentration could be changed by different cooling rates, i.e., the size would decrease as the cooling rate increased, and the maximum number concentration was found at the -80 °C system. Furthermore, increasing the dissolved gas content in the solution enhanced the production of nanobubbles, whereas for preexisting nanobubbles, the freezing resulted in a decrease in their number concentration, which was negatively correlated with the cooling rate. Our results indicated that a moderate cooling rate of -80 °C favored nanobubble generation, whereas a higher cooling rate was preferable for maintaining preexisting nanobubbles. Conversely, a lower cooling rate could be employed to eliminate preexisting nanobubbles. This study explored the evolution and stability of nanobubbles during the freezing process, providing valuable insights into the application or elimination of nanobubbles.

5.
Sci Rep ; 13(1): 8455, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231048

ABSTRACT

Antioxidation is in demand in living systems, as the excessive reactive oxygen species (ROS) in organisms lead to a variety of diseases. The conventional antioxidation strategies are mostly based on the introduction of exogenous antioxidants. However, antioxidants usually have shortcomings of poor stability, non-sustainability, and potential toxicity. Here, we proposed a novel antioxidation strategy based on ultra-small nanobubbles (NBs), in which the gas-liquid interface was employed to enrich and scavenge ROS. It was found that the ultra-small NBs (~ 10 nm) exhibited a strong inhibition on oxidization of extensive substrates by hydroxyl radicals, while the normal NBs (~ 100 nm) worked only for some substrates. Since the gas-water interface of the ultra-small NBs is non-expendable, its antioxidation would be sustainable and its effect be cumulative, which is different to that using reactive nanobubbles to eliminate free radicals as the gases are consumptive and the reaction is unsustainable. Therefore, our antioxidation strategy based on ultra-small NB would provide a new solution for antioxidation in bioscience as well as other fields such as materials, chemical industry, food industry, etc.


Subject(s)
Antioxidants , Hydroxyl Radical , Antioxidants/pharmacology , Antioxidants/chemistry , Reactive Oxygen Species , Hydroxyl Radical/chemistry , Gases
7.
Langmuir ; 38(26): 7938-7944, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35729691

ABSTRACT

Radiation on aqueous solutions can induce water radiolysis with products of radicals, H2, H2O2, and so on, and their consequent biological effects have long been interested in radiation chemistry. Unlike the decomposition of water by electric current that produces a significant number of bubbles, the gas products from the radiolysis of water are normally invisible by bare eyes, little is known on whether nanosized bubbles can be produced and what their dynamics are upon irradiation. Here, we first presented the formation of nanoscale bulk bubbles by irradiating pure water with accelerated electrons and their concentration and size distribution changes with the dose and rate of irradiation. The nanoparticle tracking analysis showed that irradiation can actually produce a certain amount of bulk nanobubbles in pure water. They exhibited a dependence on the irradiation dose rates and irradiation doses. The results indicated that the concentration of formed bulk nanobubbles increased as the irradiation dose rates increased, but it will increase and then decrease with the increased irradiation doses. The formed bulk nanobubbles could maintain stability for several hours. Our findings will provide a new angle of view for the radiation chemistry of water, and the formed nanobubbles may help elucidate the biological effects of irradiated solutions.


Subject(s)
Electrons , Hydrogen Peroxide , Water/chemistry
8.
Langmuir ; 38(26): 7914-7920, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35713371

ABSTRACT

Micropancake, a flat domain with micrometer-scale lateral size and a few nanometer thickness, is usually accompanied by the generation of interfacial nanobubbles at the liquid/solid surfaces. Unlike the nanobubbles, micropancakes are difficult to be produced efficiently, impeding further investigations of their mysterious properties. Very recently, An et al. even argued that the previously observed micropancakes were most likely the contaminate, not the gas layers. Herein, to reveal the nature of micropancakes with solid evidence, we presented the in situ characterization of micropancakes at a highly oriented pyrolytic graphite (HOPG) surface produced by the ethanol-water exchange or gas-supersaturated water. By washing with deeply degassed water (DW), the dissolution of those micropancakes was clearly observed, indicating that they may very well be composed of gas. In addition, the analysis of the force measurements showed the intrinsic differences between those gaseous micropancakes and the insoluble organic films. The data and results supported the interpretation that the real existence of gas micropancakes at liquid/solid surfaces.

9.
Entropy (Basel) ; 24(5)2022 May 15.
Article in English | MEDLINE | ID: mdl-35626583

ABSTRACT

AMC (automatic modulation classification) plays a vital role in spectrum monitoring and electromagnetic abnormal signal detection. Up to now, few studies have focused on the complementarity between features of different modalities and the importance of the feature fusion mechanism in the AMC method. This paper proposes a dual-modal feature fusion convolutional neural network (DMFF-CNN) for AMC to use the complementarity between different modal features fully. DMFF-CNN uses the gram angular field (GAF) image coding and intelligence quotient (IQ) data combined with CNN. Firstly, the original signal is converted into images by GAF, and the GAF images are used as the input of ResNet50. Secondly, it is converted into IQ data and as the complex value network (CV-CNN) input to extract features. Furthermore, a dual-modal feature fusion mechanism (DMFF) is proposed to fuse the dual-modal features extracted by GAF-ResNet50 and CV-CNN. The fusion feature is used as the input of DMFF-CNN for model training to achieve AMC of multi-type signals. In the evaluation stage, the advantages of the DMFF mechanism proposed in this paper and the accuracy improvement compared with other feature fusion algorithms are discussed. The experiment shows that our method performs better than others, including some state-of-the-art methods, and has superior robustness at a low signal-to-noise ratio (SNR), and the average classification accuracy of the dataset signals reaches 92.1%. The DMFF-CNN proposed in this paper provides a new path for the AMC field.

10.
J Ginseng Res ; 41(3): 290-297, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28701869

ABSTRACT

BACKGROUND: The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ, and three-dimensional quantitative imaging properties. METHODS: The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. RESULTS: The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. CONCLUSION: This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

11.
J Synchrotron Radiat ; 19(Pt 5): 821-6, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22898963

ABSTRACT

An X-ray grating interferometer was installed at the BL13W beamline of Shanghai Synchrotron Radiation Facility (SSRF) for biomedical imaging applications. Compared with imaging results from conventional absorption-based micro-computed tomography, this set-up has shown much better soft tissue imaging capability. In particular, using the set-up, the carotid artery and the carotid vein in a formalin-fixed mouse can be visualized in situ without contrast agents, paving the way for future applications in cancer angiography studies. The overall results have demonstrated the broad prospects of the existing set-up for biomedical imaging applications at SSRF.


Subject(s)
Carotid Arteries/diagnostic imaging , Tomography, X-Ray/methods , Angiography/methods , Animals , China , Diagnostic Imaging/methods , Mice , Synchrotrons/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...